If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21z^2+5z-26=0
a = 21; b = 5; c = -26;
Δ = b2-4ac
Δ = 52-4·21·(-26)
Δ = 2209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2209}=47$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-47}{2*21}=\frac{-52}{42} =-1+5/21 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+47}{2*21}=\frac{42}{42} =1 $
| P=-7+q | | -d-8=-2d-18 | | 248-u=58 | | 13x=9x+32 | | 6y-2=3y+9 | | 15-(2m+6)=3+2m-14 | | 7–x=5,x= | | 245=-y+49 | | p^2-p5=p^2-7p+12 | | -y+49=245 | | 5-6x=6x-5 | | 18c=15 | | 3y-16=2y | | 2(w-3)+7=1-7w | | t3−9t=0 | | 18o=3+15 | | 3x+28=4x+27 | | 18c=3+15 | | 11x+35=3x+43 | | 11x-7=9x+17 | | 18c=15+3 | | 7a=4(2a+11)-9 | | 15c=3+18 | | q-6=3q-24 | | A=-10+b | | 3=15+18c | | 3=15c+18 | | 5z+42=4z+56 | | 3c=15+18 | | 3c=18+15 | | 18=15+3c | | 15=18+3c |